Matheran, a Hill-Station in India, Maharashtra, is the only location in India, where no tar roads and no motorized vehicles are allowed. The only road access from NERAL at a height of 39.3 m above sea level on the East-Side ends at a height of 758 m and 2 km outside the town of Matheran at DASTURI. All materials, goods and delivery products have to be transhipped from arriving lorries and good carriers on hand pulled carts or pack horses and carried over a cart-road with steep gradients to Matheran Market at a height of 804 m above sea level. The cart road passes a hill-slip prone zone near Beatrice Cliff. During the heavy rainfalls of the 2005 monsoon, this “only supply route” got blocked by mud-, earth-, rock- slips and hill-slides.

The narrow gauge Toy Train from Neral to Matheran proofed to be not all-year-round reliable. Since 2005 the railway had to be closed down several times for month-long repairs and reconstructions after severe damages inflicted by heavy monsoon rainfalls.

The idea had been borne to look for alternative, more monsoon proof transport routes.

An Aerial Ropeway from the East-Side over the Garbut Rim proved to become uneconomical and heavily inflicting with the ecological sensitive declared zone of Matheran.

In 2009, it was during the tenure of the Matheran business tycoon Mr. Manoj Khedkar as the president of Matheran Municipal Council, that the idea of a Funicular Railway on the West Matheran Side along the slopes of the ravine between Porcupine Point and Maldunga Point from Dhodani to Malet Spring Point together with a feasibility report had been floated:

The technical paper reveals, that an about 2.5 km long  Funicular Railway on the West-Side of Matheran from a difficult to reach bottom station at the village Dodhani to an upper station in the forest near Malet Spring, about 1 mile outside of Matheran, will become extraordinary capital investment intensive  and highly inflicting with the nature preservation activities. A similar uncompleted project near Kalyan is in limbo, and the uncompleted steel trajectory/guideway is left to heavy corrosion, with no chance to be ever completed due to unsolved safety aspects. The chosen elevated trajectory is not safe against possible derailments.

After refurbishing the Neral-Dasturi tar-road, this “only road” is now in a quite good condition. However, some selected sections have to be further secured against Rock-Falls and Hill-Slides by state-of-the-art Rock-Fall  and Slope Stabilisation technologies.

The Car-Park at Dasturi got a pavement with interlocking cement stone blocks. It is said that the Taxi-Stand, Transhipment-Area and Horse-Stand will soon be also paved.

The visitor entrance from the toll boot up to the hand-cart/rickshaw stand has been dressed up with a new look.

Further programmes for the beautification of the infrastructure for visitors, tourists, customers and guests are in progress hoping that in the post corona period they will flock in as before.

The stony and dilapidated Dasturi-Matheran Cart-Road is currently under reconstruction and will get a smooth surface with brick paver blocks over a full 5 km length up tp Pandey Play Ground. Over lowering-spots, the alignment of the cart-road gets flattened by lifting on gabions and culverts of up to 2.5 m height. However, the steep gradient/incline at the hair-pin curvature before Wayside Inn will remain an unsolved obstacle. To lower the ruling gradient, the road has to be elongated by a new trace through the protected forest. But will be not allowed under the conservation rules.

In order to achieve an all-year-round reliable and stable route, the next step must be to prevent the section near Beatrice Cliff to slip further down. This could be done by a comprehensive surface-water management with a network of catch-drains. Gabions cannot stop hill-slides.

Once the cost effective East-Side transport route from Neral will become all-year-round safe operational and resistant against the impacts of heavy monsoon periods on the way to come, there will be no need any more for high capital investment alternatives.

To learn more, download the PDF:FUNICULAR MATHERAN


This elaboration has been composed for a book project of Indian Railway Authors on METRO RAIL IN INDIA as Part I of a Picture Gallery with images of the operational colour coded Lines of Indian Metro Rail.

Worldwide India is raking second behind China in regard of the pace in installing and expanding in its cities Metro Rail. The operational total length as April 2020 has reached 692.65 km. Further 968 km are at present under construction or extension in varies cities.

METRO RAIL IN INDIA, meeting the demand for Urban Mobility, is a success story for its fast paced legislation, planning, financing, construction and operation; and in the last 18 years has significantly improved URBAN MOBILITY and changed the public transport in several Indian cities.

The Kolkata Metro was for 18 years the only Underground Metro Rail in India, opening for commercial services from 1984. It celebrates now its 35th anniversary.  Only after 18 years, Delhi was the second city to get Metro Rail. The first underground section (Vishwa Vidyalaya – Kashmere Gate) of the Yellow Line opened on 20th December 2004. Within only 18 years the network expanded to 692 km serving over 250 stations.

Delhi Metro is a Pioneer in METRO RAIL EXPANSION and a Symbol of the Progress, that India has made in the last two decades. The leading eminent personality behind this success story is Mr. E. Sreedharan:

See: Rajendra B. Aklekar: “INDIA`S RAILWAY MAN – A BIOGRAPHY OF E. SREEDHARAN”, 2017, Rups Publication India Pvt., New Delhi, ISBN: 978-81-291-XXXX-X.

The rapid success with Metro Rail is also owed to the fact, that India has imported under the leadership of E. Sreedharan  the technology from abroad.


Demand for Attendance-free “fit-and-forget” Rail-Fastening on envisaged Indian Railway`s “Semi High-Speed” Routes – Pandrol Fast-Clip an advisable Solution

Indian Railways is fastening the Rails on Concrete Sleepers over its entire network with the so-called MARK III Elastic Rail Clip (ERC), which had been evolved with a modified spatial bend by RDSO from the left-handed Pandrol 401 Series with an anti-clockwise bend of the rod.

The MARK III ERC is far away from being “fit-and-forget”. Each and everywhere on the IR network one can detect loose or fallen off ERCs. Regular controlling by a patrolling key-man is needed to push back loose or fallen off Elastic Rail Clips into the tunnel of the shoulder plate/housing.

To increase the Speed of Passenger-Trains to 160 kmph on existing Routes is a long-term corporate objective in India based on policy initiative. The risk of patrolling key-men on duty increases over-linear with the train-speed. Rails on tracks envisaged for 160 kmph “Semi High-Speed” routes demand a “fit-and-forget” attendance-free Fastening System without the regular need of a patrolling key-man pushing back loose or fallen off Elastic Rail Clips (ERC).

Worldwide the Pandrol Fast-Clips are increasingly superseding the right-handed Pandrol Brand e-Clips resp. left-handed 400 Series Clips. This Fast-Clip takes a trumped around the globe especially in England, Germany, France, Poland, Sweden, Estonia, Georgia, Lithuania, Russia, Serbia, Hungary, Corsica, Sri Lanka, Cambodia, Malaysia, Saudis, Australia, China and USA.

With Fast-Clips no patrolling key-man will be needed. This ERC is an advisable solution when it comes to a track renewal or upgrade for envisaged “Semi High-Speed” routes.


To read more download:


This technical paper is a revision of the Chapter 8 Draft of J.S. Mundrey for the forthcoming 5 th edition RAILWAY TRACK ENGINEERING with modifications and amendments by Dr. F.A. Wingler.

A Railway Track needs to be addressed in its entirety rather by only its individual constituents.

The technical paper deals in Part I with the Load Transfer in Track, with Ballast, Sub- Ballast Blanket Layer, Formation, Substructure and Drainage and delineates and  illustrates in Part II Track-, Hill &  Cutting Slope-Drainage- Systems.

Cuttings are injury to the nature and disturb the natural water-flow. And if not appropriately protected and secured, nature will take revenge with Hill-, Mud- or Rock-Slides. This can cause nasty railway accidents.

Ballast is the “Blood of the Rail Track” and Water is the “Enemy of the Rail Track”. Without a stable, well bearing and well drained Sub-Ballast, Formation, Sub-Grade and Sub-Soil  there will be no stable Rail Track.

Initial High Quality of all interactive Track-Constituents in their entirety result in low Deterioration Rates under given traffic load, and hence initial High Track Quality cuts overall Life Cycle Costs. Quality is no Luxury. Capital Investment in High Quality pays off over the Life Cycle.

To read more, download


RISK & HUMAN ERROR MANAGEMENT – The Nature of Latent unsafe Conditions and the Nature of Human Error A Guide to the Ultimate Goal to prevent Railway Accidents

Around the Globe technical Organisations with a high Risk Potential in Space Technology, Aviation, Nuclear Power Generation, Oil Exploration, Land and Maritime Transportation, Railways or Chemical Production have made in recent years remarkable improvements in their Safety Records by using the Doctrines and Methodologies developed by James Reason, UK.

The following treatises had been elaborated to help Sri Lanka Railways to find a path to more Safe Train Operation and to more Professionalism in Risk & Human Error Management and Accident Investigations.

Understanding the Human Factors and the Human Error producing Conditions is essential.
Download paper
Risk & Human Error Management

Normal Speed, Higher-Speed, Semi-High Speed and High-Speed in India

The question is if it will be prudent to invest capital in new dedicated HIGH-SPEED LINES for 200-300 kmph, which have to be built in Standard 1.435 m Gauge and not in Indian Broad Gauge, since worldwide no specific High Speed Train Technology had yet been developed for the Indian or Iberian Broad Gauge,

this is why Japan had to go for the new dedicated High-Speed Lines from Meter Gauge to Standard Gauge, and Spain had to go from their Iberian 1.677 m Broad Gauge to dedicated Standard Gauge High Speed tracks

or if it will be more advisable to use the conventional infrastructure by investing in special prepared conventional ballasted up speed-ed Broad Gauge Tracks for “SEMI-HIGH SPEED” up to max. 200 kmph, parallel to existing alignments, which could also be used by 110 kmph conventional coach trains.

Download paper